If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x+15x^2=0
a = 15; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·15·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*15}=\frac{-100}{30} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*15}=\frac{0}{30} =0 $
| 16+n=17n | | 2-3(x+4=9-(3+2x) | | 7/10w-18=5/1/5 | | 4=0.14x | | -3/7x=1/2 | | -16x^2+30x=9 | | 6x^2+18x-6x+18=0 | | 7(5x-4)-1=14-5x-3x | | r+13=11 | | 6s=s+20 | | 10-2(x-4)=6x-14 | | -1.5+x=8.2 | | 4(r+2)=6*1 | | 0.4g=3.2 | | 24x3x=3x+3(7-1) | | 1/2(x)(x+4)=16 | | 2x-3x(6x-11)=-7 | | 9m-3=5m-3+4m | | 15.35=c-1.84 | | 5x-8-3x=4x+28 | | x+10+3x-5+x=90 | | 9e+5-1=7-0.5*2 | | 4x/5-6=4x/5 | | 10m-2=21 | | 20x=21x-7 | | 9*e+5-1=7+0.5*2 | | 2m-3-8m=-25 | | 221+t=386 | | 2(108x+113)=1,522 | | 8h=+7(2+4h) | | -14a+5-8a=-1 | | 12p+3=-7 |